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NECESSARY CCNDITIOHS FOR CONTINUOUS PARAMETER
STOCHASTIC OPTIMIZATION PROBLEMS

H. J. Kushner

1. Introduction.

This peper applies the sbstract variational theory of Neustedt
[1] to obtain a stochastic maximum principle, Since the papers cf
Kushner on the stochasvic meximm principle [2], [3], a number of
developments were reported in . -odeau [4], Baum [5], Fleming [6],
Sworder [7] - [8]. The versatile mathematical programming ideas
were not used explicitly in [2] - [8], and, with relative ease, we
are eble to handle greater varietles of state space constraints then
treated in the references., A discrete parameter analog of the
discrete maximum principle of Halkin [9] and Holtzmen [10] appears

in Kushner [1l]. Even in the de%terministic case, the ebility %o handle

general constraints with relative ease gives the programming approach a
distinct advantage over more direct approaches.

It is premature to assert that the stochastic maximum principle
will be useful in providing any deep understanding of stochastic
control problems. Nevertheless, it seems likely that the implicit
geometric fremework (at least in the programming approach) will
suggest some useful approximatiorn or numerical procedures. The results
may serve as a departure point for a perturbation analysis as in the

formal work [12], and the nature end interpretation of the random



multipliers may shed additional light on the physical interpretation

of the derivatives (weak or strong) of the minimum cost function

waich appears in the dynemic programming formulation for a fully

Markovian problem, These various points are under current investige-

tion for both the present work and [1l]. Even for an initially

Markovien problem, dynemic programming is not always applicable when

there are state space constraints, and the alternative programming

formulation may be useful tc shed light on the control problem. For

e discussion, for an elementary stochastic control problem of the

relationship between randomized controls and 'singular arcs' see [13].
The problem formulation and mathematical background is given

in Section 2. A required result of Neustadt is stated in Section 3,

the linearized equations are discussed in Section 4. Section 5 derives

a certain convex cone. The maximum principle is stated in Section 6.

The development in Sections 4-6 is for the open locp case and extensions

are discussed in Section 7.

2. Problem Formulation and Mathematical Background.

Assumpticns.

Let z(t), 0<t<T bea vector valued normalized Brownian motion
on the probability triple (Q,P(-), H), where Q is the sample space,
.and P(.) the meaéure on the &;;léébf;:.ﬁa on é. For‘éhe vecto£
x=(ﬁpuﬁg end matrix ¢=wm;gj=%”uhdﬁmeme

Euclidean norms ]x|2 =2 lxila, |¢|2 = 21$§j. The control system
i i,3



of concern is the stochastic differential equation (1) on' the time

interval [0,T]

(1) ax(t) = £(x(t),ulw,t),t)dt + o(x(t),t)dz(t).

where z and x are n+ 1 vectors, and x(t) = (xo(t),...,xn(t))

where x(0) 4s independent of z(t) - z(s), t > 8 > 0, and also
th

2
E[x(0)|” < w. Write o= [g_,...,0.], where o, 1s the 1™ column of
0. We may write (1) as
(2) dx(t) = £(x(t),u(w,t),t)dt + %‘, 0, (x(t),t)dz, (t).

The cost is defined to be wo(x(-))

(3) 9o (x(+)) = Ex (1) + Bu(xy),

and we impose the vector constraints

+Usually the o argument of a random variable or function is omitted,
end sometimes, when we write the differential form (1), the ¢
argument will also be omitted. Also the prime ' on x' denotes

transpose.



ro(x(+)) = Eig(x(0)) = 0
a,(x(+)) = Eq (x(0),EX(0)) < O
(h) qi(x(')> = Eai(X(ti),EX(ti)) f_ 0, 1= l)"')k ) 0 < ti < t1+1 < T.'

ro(x(+)) = Exg,(x(T),EX(T)) = 0, ap(x(+)) =
EET(x(T),mc(T)) <o.

It is assumed that () implies that x _(0) = 0. As a!scussed below
more general constreints can be trested. Let u(w,t) and ?c(w,t)
denote the optimal control and the corresponding trajectory, resp.

Assume

~

(I-1) The femily of admissible controls % is the collection
of measurable random functions u(w,t) with values in the set %,
at each t e [0,T]. For each t, u(w,t) is measurable witn respect
to the data c;algebra 52%, which is non-anticipative with respect
to the z(s) process. The initial condition x(0) is measurable
over 4 end E]x(o)l2 <w Let % contain at least one other

point beside 9.

(I-2) The f(x,u,t) and o,(x,t) are Borel functions
of their arguments, and are differentieble with respect to the

components of x, and satisfy a growth copdition of the type

|f'(x,u,1:.)'i"E < Ko(l+|x|2), Iai(x,t)la < Ko(l+|x|2), uniformly in

ue %, eand t. The function f(x,u,t)» is continuéus at each (x,u),v
uniformly in t. The Jacobiens £, (x,u,t) ~end °i,x(x’t) are uniformly

bounded.



(I-3) For each t e (0,7] and 4 measurasble and %, velued
varieble, there is a 8(t) > 0 8o that for each & < 6(t) there is a
random variable Et-s with the property that Et-b is measurable over

each Qs and has values in each %B where 8 e [t-5,t] and
~ ~
(5) f(ﬁ(t),ut,t) - £(x(t),u;_gst) 2O
in probability as 5 - 0. Both 31_'_5 end 5 may depend on u, and t,

Note. The condition of the last paragrepn is included eince

we will use piecewise constant and non-anticipative perturbations
to the optimal control. It asserts that the effect of any control
u, which is admissible et time t can be epproximated by a control

u

£.8 which is admissible at any point in the small interval [t-5,t].

(I-k)

lq_i(X(ti))‘ < K°-(1+Elx(ti)|25, i=0,L,...,kT
|z ((6,)] < K (14E[x(5,)]%), 1= o0,

The Ei(x,e) and ?i(x,e) and h(x) are Borel functions whose

first derivatives with respect to each argument exist. Write
N A A A ~ ; ~

Y x Y60 1w T e for the Jacoblens of q,(x,e) and r,(x,e)
with respect to the first and second arguments (x and e) evaluated

at X = §(ti), e = Eﬁ(’ci). Write ﬁx Por the gredient of h(x) evaluated

st X(T).



Suppose that the q,(x(.)) end ri(x(-)) (evaluated at ﬁ(ti)) and

Eh(x (evaluated at §T) have Frechet derivatives Q,,R,,H, resp., of

)
the form

A -~
Qv = E[qi’x-v + qi,e°EV]

A
R,V = E[ri’x-v + ?i’e-EV]

B
Hv = EthV

where v is an arbitrary (n+l) vector with square integrable
components. I.e., the Q,, R, and H are continuous linear

(vector or scalar valued) functionals on the space of squere -
integrable random variables, [since q and ry depend only on

x(ty), the Frechet derivetive is appropriate] and, e.g.,

%E[?ii(:?(ti) + ev, X(ty) + Eev) - Ei(’?(ti)’m?(ti))] 2 QY

88 € -0 uniformly for v in any bounded set (v: EIVI'2 <a<al,
The components of each of the vector valued linear functionals Ri

are linearly independent.

: o )
(I-5) Let q = (qi‘,...,,.qii)'. For the inactive' inequality

constraints q‘}_(x) , suppose that there is some €, >0 8o that

+
al is active et £(.) 1if a)(R(.)) = 0. Otherwise, it is said to

be inactive.



qg(ﬁ(ti) +v)<o

o

for Elvlz2 < €. For the active constraints qi(x) guppose that there

is a square integrable v, 80 that for each 1 and active qi,
J,
Qi v, < 0

where Q'i is the Frechet derivative of the constraint component qg(x)
N

3. A Veriational Result of Neustadt.

Por future reference, we describe a variational result of

Neustadt [1]. Let 7 denote a locally convex topological space
which contains the set Q.

Definition. Let P" denote the set (B: Bi >0, iglai <1l}. Let
K be a convex set in 9 which contains (0} and some point other
than {9}. Let wl,...(,wu be in K and let N be an arbitrary
neighborhood of ({0)}. ILet there exist en €, >0 (depending on

Wiy, end N) so that, for each e in (0,¢)], there is a

continuous mep { (B) from P to 9 with the property

n
t.(B) C [e(izlﬁiwi + )N Q.



Then K 1s & first order convex apgroximation to Q.

A Basic Optimization Problem.

Let 7 contain the set Q'. Find the element W in Q

which minimizes the real velued function rpo(w) subject to the real

valued constraints @, (w) = 0,1 =1,...,u, ¢ 4(w) g0, 1=1,...8.

We say that W is e local solution to the optimization problem (or,

more loosely, the optimal solution) if, for some neighborhood N of

(0}, wo(w) 2()0(3) for all w in W+ N which satisfy the con-
straints. Let W denote the optimal solution. The constraints

P 4 for which $_ 4 =9, 1(%) = 0 are called the active constraints,

Define the set of indices J = (i: cp_i(‘?:) =0, 1 >0} U (0}.

The Basic Necessary Conditlon for Ogtimality.

Pirst we collect some assumptions

(II-1) The (pi(w), i > 1, are continuous at W. There
are continuous and lineerly independent functionals Zl, oo .,z“ for
' A
which [;pi(?r'rewn) - cpi(w)]/e - Bi(w) -0 as € -0 and for any

bounded sequence Wy oW in 9.

(II-2) There is a neighborhood N of ({0} in F so

that, for all inactive constraints, we still have cp_i(?ﬂ-w) <0 for

w e N.

(II-3) Let the active constraints and also @ be con-

tinuous at W. For the active constraints, let



[o_y (Frew ) - 0_; (W)1/e = e, (w)

as € -0, for any bounded sequence w, - W in .9, where ci(w)

is a continuous and convex functionul., There is some w and some
Jj € J for which cd(w) > 0. There is a w for which cd(w) <0
for all. J € J.

A case of particular importance is where the differentials
ci(w) are linear fynction#ls. Then the next to last sentence of
(II-3) iz implied by the last sentence of (II-3).

We now have a particular case of (Neustedt [l], Theor'r

4.2)., The local or optimal solution here is called a totally regular

local solution in [1].

Theorem 1., Assume (II-1 - II-3). Let W be a local solution to
AR S

the optimization problem. Then there exists o,.. .,czu,ao,a_l, RN

P
not all zero with o , <0 for 1 >0, so that

AT R

n
Tatw)+ La,,(w)<o0
je1 11 feg 11 =

for ell w in X, where K is e first order convex approximation

to @ -%=Q, and K is the closure of K in 7

Remark. Let cpi(-) =0, 1>0, If there isa weX for
which ¢ 3 (w) <0 for all active J, then o <O, end w2 can set

Q, = -1,
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Tdentificeation with the Stochastic Control Problem,

For the problews of the sequel we define ¢ to be the
locally convex linesr topological space of (n+l) dimensional
random functions v with velues v(w,t), where v -0 in F

if and only if
B|v_(0,8)]% = 0
n )

ro::r+each t in [0,T]. The set Q' is defined to be the set of
sclutions*? x(w,t) to (1) for all admissible controls, and initisa)
conditions satisfying Elx(0)|2 <®, x,(0) =0, and x(0) in-
dependent of z(t) - z(s), t > s > 0. The constraints {qi] ere
ldentified with the (p_,, £>0) and the (r]) with the (9,, £ > 0).
Also o, = Ex (T) + Eh(xT). X is the optimal element of Q' and
Q=Q - (X}). Conditions (I-'l) - (I-8) imply (II-1) - (II-3).

With the framework of constraints (4), we cen include con-
straints such as E (f) igi(x(s))ds < 4, and can epproximate

constraints such as P(x(t) € A} < d,, vhere A has a smooth

*It is easiest to work in the spsce of random functions 9, as it 1is
described sbove. By (I-1), (I-2), we lose nothing by sltering .7 so
that v -0 if E|v, (o,t)|? -0 for any p>2. In this case the
quadratic estimates ('I-»l&) on q, and ry cen be replaced by
[qi’(x(ti))l < Ko(l...Elx(ti”P), ete, More zeneral situations are
obviously possible and, in particular, the Lipschitz and growth
condition on the zeroeth component of f£(x,u,t) cen be relaxed.

++x,§ or v eare elements of Z. Notetion will be abused by also

using either of x(%) x(w,t) for the element of 7, as well as
for the values of the element. ‘ '
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boundary. More general inequality constraints than (4) can be included,
once the appropriate linear or convex di."-.entials ¢ 4 (see II-3) are

calculated.

4, fThe Linearired Equations.

Consider the equations (6) and (7), where 0 <T<t<7T,

is fixed and o(t,7) is an (n+l) X (n+l) matrix’

(6) ay(t) = ?‘x-y(t)dt + vi* dzi(t)gi,xy(t),
(7) a0(t,7) = 2, 0(t,7)at + ? dzi(t)ai’xﬁb(t,'r),

where 0(t,7) = I, the identity, and Ely('l:)l2 <o and y(1) is
independent of z(t) - z(s), for ell t > & > 1. Both (6) and (7) ha(re
unique continuous (in t) solutions, with finite mean square values. A
version of ®(t,7) is measurable in (t,w) for each 7. By uniqueness,

for each T ¢ [0,T], w.p.l.,

Q(t: T)y‘('l‘) = y(t)

and, for t> 1T, > 71, w.p.l.,

o(t,7,)0(7,7) = o(t,T).

.................

~ S A
f, denoctes tx(x(t),u(t),t), ete.
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Furthermore, ®(t,T) is mean square continuous in 17, uniformly
in t e [1,T]. Indeed, we have w.p.l, that &(t,7+e) and o(t,7)
are the solutions of (7) which stert at time < + € with initisl

velues I and O(7T+e,T), resp. By known estimates for solutions

of stochastic differential equations, for real K,,

E[0(t+e,T) - IIL‘_<_ Klea

end, hence, for t in [71+e,T]
4 2
(8) E|o(t,m+e) - O(t,7)| < Kye .

Equation (8) implies that there is e continuous version of (T, T)

(Proposition II1.5.3 of [14]) (t is the parameter). Finally, if

B[y(0)|2 = o(?) (or o(e?)), then Bly(t)| = o(?) (or o(e)).

This last fact will be used frequently in Theorem 2.

5. The Convex Cone K.

We will require the following lemma..+

Lemma 1. Assume (I-1) - (I-2). Let the measurable function ¢(w,t)

be Lebesgue integrable on [0,T] for almost all fixed w. Then

+The proof of Lemme 1 resulted from a discussion with W. Fleming.
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t
Flo,t) = [ ¢(w,8)ds
t

(o]

is differentisble with respect to t on an (o,t) set of full

measure with derivative ¢(®,t)., Thus, there is a null set

T, € (0,T) so that, for each fixed 1 £ Ty, F(w,t) 1is differentiable

with derivative ¢(w,t), w.p.l. In particular, for ¢(w,s) =

£(X(s),%(s),s) end any scalers o, We have

t+ e0'2

J.
t- eal

£(R(2),5(e), 2)ds - (a+o)E(R(%),5(8), %) -0

LY Do

w.p.l., for eny t not in some null set T,.

There is & null set T, C (0,T) so that for t ¢ T, and

any rendom variable u,

t+e02
21 2(R(s),u,8)ds - (aytoy)E(R(t),u,t) >0
€ t-eay

w.p.1l.

Proof. Define

t+%r
) ¢(w,s)ds,
t-alr

sl

Fr(a),‘t) =

where r is rational in [0,1]. There is 2 null ® set N, so



1k

that, for ® ¢ N, ¢(w,t) is Lebesgue integrable on [0,T] end,

hence for ¢ N,
Fp(@,t) - (og+oy)e(w,t) -0

for almost all t (the null t set depending on w)., Also

Fr(w,t) converges to (al+o/2)¢(a>,t) c?n & measurable set

8c (2-N) X [0,7] as r —>0. If F (w,t) converges as r —»0 through
the rgtionals, it converges to the same limit as r - 0 through auny

sequence,
The Lebesgue measure of the fixed w sections of § (for
w £ No) is T. Hence by Fubini's theorem, the mer-~urable set S

has full measure. Thus, there is a null t set T so that for

1l
t £ Ty, F(w,t) = (0q+a )0 (w,t) w.p.l. The statements of the
first peragraph of the lemma follow from this.

Let g(v,t) denote a Borel function which is continuous et each
v, uniformly in t. Let g(v(t),t) %be integrable on [0,T] for

eny continuous v(t). Then there is a null set T, so that, for

t £ Tp,

theay
) g(v(s),s)ds - (o +a,)e(v(t),t) =0

t- Gal

ol

as € -0, for any continuous function v(s). The second paragraph

of the lemma follows from this by letting f£(X(w,t),u(w),t) =
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g(v(t,w),t), where v(w,t) = (X@,t),u(w)) and noting the continuity

(in (x,u)) properties of f(x,u,t) which were assumed in (I-2). Q.E.D.

The Convex Cone K.

Define the elements 8xs

u

, of 7 (with values bxs,u(w,t),

sometimes written as ®_  (t)), for s 3K T, U T, (see Lemma 1
2
for the definition of T,)

axs,u(t)=o, 0<t<s<T

= 0(t,8)[£(X(s),ny,8) - £(X(s),1(s),s)]

TZtZs,

where uB is a QB measurable random variable with values in %s.

Define the set K as the convex cone (in 9 ) containing elements

of the type
d
K= (8x: 8x=cBx + e y 2 C1 arbitrary, real, non-negative;
=1 1 %50,
d arbitrary, finite},
where

on(t) = 0(t,0)8x(0),
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where 8x(0) is independent of z(t) - z(s), all t > s >0, and
E|5x(0)|2 < w, By Thecrem 1, K is a first order convex approxima-

Q.

tion to the set Q' - (X)

Theorem 2, Assume (I-1 - I-3). Then K is a first order convex
=== e e—

approximation to Q = Q' - {:?].

Proof., Define the.se’c A= (A= (N,..0,\)): N 20, 2;,7\1 < ).

Let 5xl,... ,me denote any m elements of K, Then,. writing
u, for u_,
J 85
Bxi = Z Bivj + Z B j i
J=1 i IS

for some set of Bi.j’ Eid’ and sets Upyeeeylys Sl,...,sq‘ and

Sxi(t) = @(t,o)éxi. We assume that s, < s Any element in

i="i41°
ﬁ, the convex hull of (O,'éxl yoos ,5:5“) , corresponds to some A €A

and conversely, and has the form

m .q m g, g
8x. = L A(YB,.5 F TA(DB.Lx) = T s, (M)
"5 1(3= Byy xsd’“d); oy 1Pl o) i 3()x5 .

§ 81: (%) Bx

B

Bt (N) = 2‘313 12 St (N) = 3 Nso
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Note that €8t (A) = 8t;(eN) for any scelar € >0, and similarly
for 83;'1(7\). Let 5(52) denote any random function v_ for which
EIVe(t)f2 = O(ea) for t e [0,T], and write v_s= '5(52)

if Elve(t)l2 = o(ea) for each t e [0,T]. To prove the theorem we
rnust show that there is an €, > 0 3o that, for each €< €,» ‘there

is e continuous map ¢ (A) from A into J of the form

(9) ge()‘) =X+ eﬁx.)\ + P

)

~, 2
where 96,7\ = o(e ).
Next, a perturbed control and initial coniition will be

~
described. Suppose first that the = g ere distiret and s 1 ﬁ T = Tl U '1‘2.

Define T = sup Bti(')\)-q, and
1, MeA

I,(eN) = (t2 8, - eBti(A) <t <)

There is an e >0 80 that for e < e, we have (1): the I;(eN) ere
distinet, (ii): all s; - €7 >0, (iii)! eT < min [5(81),...,5(sq)],
where B8(s) is defined by (I-3), and S(Si) corresponds to s, and

control u; at s;. Define the perturbed control u (%)

(10) “e)\(t) = G(t): b £ E_J 11(57‘)

= uﬁi_”, t e I,(eN),
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vhere uai-et corresponds to u31 by (I-3), and as ¢ -0, (5) of
(1-3) holds,
If the s, are not distinet, we follow the method for the

deterministic problem [16] and define

= Bty (A) + oo 4 Bt () AF s

)
o0

see = 8

Ty 1= 440 aQ

i+l s 8r < sr+l’

]
W

= Bt (N) + ocv o 8tr(k) if s r<aq.

Ty i

I;(eN) = (ti 8y - €1y <t <8y - €Ty + edt, (N))

= (ti 8, - (Bt () + o0 + btr(k))

<t -<- 81 - 6(5t1+l(7\) + s 4+ Etr(')\)).

Then define uék(t) es in (10), Thus, if some s, are identical,
the intervals are shifted to the left.

By (I-1) end (I-3), the u,(t) is edmissible. Let x , ¢ JF de-
note the solution of (1) for control u ., (t) and initiel condition

(1) 2(0) + ¢ ngazd (et (0) = £(0) + ety (0) = x(0)

eBx, (0) = &x , (0).

Define
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(12) £ (N) = x .

2Fix € in (0,e)). let A(n) A in A. Then Elxd\(n)(o) -
p 4 e}\(o)l - 0, and the total leungth of the intervals on whicn
Yea(n) (t) # ud(t) converges to zero, These facts imply that
2
Elxek(n) (t) - xe)\(t)l -0 for cach t, which implies the continuity of
§€(7\) for eacli € < e, . We need only prove the expansion (9), end this

will be done in three parts.

l°. Let Ki denote real numbers.

(13e)  ax(t) = £(X(t), U(t),t)dt + § az, (t)o, (R(t),t)
(l}b) d'xek(t) = f(xe)\(t),uex(t),t)dt + ‘3‘. rlz'j (t;)u':l (xe%(t),t)

(13¢)  dy,(t) = Ty, (b)dt + [£R(6),u (4),t) - £(R(8),8(t),1)]
+ ‘g. dz, (4)6 ,xye‘)\(t)

ye?\(o) = Bxe.)\(o)-s ebxk(o).
Using stendard estimates it can be shown that, for some X, < =,

(1) mex E mex Ixe)\(t)lzsxl.
e<e ,Neh  O<t<T

Next, we show that
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(15) B|%(t)]% = EIR(8) - x(6)]2 = o(e®)

uniformly in t. FEquation (15) holds for t = 0. Assume it holds
A

for t =t_,, and that ue%(t) = u(t) for te[t,t,]. We will

show that (15) holde uniformly in [t_,t,]. Then, if (15) holds at

t= s, - ¢p, we show that it holds uniformly in [e,-e€p,s,], for

any real p for which By - €0 2> 0. These two fac“e imply (15) ee

asserted. Let X(t) = xeh(t) - Q(t). Then,

t
X(t) = X(t,) + ! [£(x(s),8(s),8) - £(%(s),0(s),8)]ds
o

t
+ f [a(xe.)\(s),s) - 0(}?(8),8)]6.2(8),
tO

where E|§(t°)|2 = 0(e2). By stenderd estimates using the Lipschitz

condition,

t
El%(6)]® < Kl X()1° + Ky B|%(s)| %ae
(o}

which implies (15) in [t,,t;]. Next, write

t n R ,
X(t) = i(si-ep) + [ [f(xex(s),uex(a),s) - £(x(8),u(s),s)]ds
8,-¢p
’ t
e ] [olxg(s),8) - a(i(s),s)]dz(s).
Bi-tp
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Using the Lipschitz condition on o, and Schwarz's inequality on the

drift term, gives
t

E|%(t)]° < %E'%(Biuep)]a + K3t£ pE[f(x‘)\(s),ud(s),s) -
i-G

P 2 LI 2
- £(%(s),0(s),s)]"ds + Ky { Ix(2)|"ds.
. i-'CD

Using (14) and the growth condition [f[a < Ko(l+]x|2) in (1-2) gives

Y- ~ 2 2 a2
E|x(t)| 5K5E|x(si-ep)| + KT+ x3f E|x(e)| ds
8,-€p
1

from which (15) follows in [si-ep,si].

By reasoning close to the foregoing, it can be shown thet
2 2
(16) E|y ) (£)]7 = 0(€7)
uniformly in t e [0,T].
2°, Next, it will be shown thet
& 2 2
(17) E|x (%) - R(t) - v, (8)|% = o(e®)
by the method used to show (15). Suppose a(t) = uek(t) in

t € [ty,t,] and (17) holds for t = t,. Write F(t) = x5 (t) -

R(t) - yg(t). Then, for t e [t,t],
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t
V() = F(t,) + ! [£(x(8),8(s),5) - £(R(s),(8),8) - 2,y(s)] s
o]

t ~ R
+ { ?dzd(s)[ad (xe)\(s),a) = UJ (x(s)ys) - UJ,XVG:)\(S)]

o)

t t
(18) = Flog) + [ BF(s)as + [ Tang()3, F(s) + e () + ey(t),
t, t, J )

where, for x(s) = x(s) - X(s),

t -~ ~ ~ A A ~
e (t) = [ [£,(R(z) + (a)%(s),0(s),8) - £, (X(s),0(s),8)T(s)as
tO

t A ~ ~ ~
%a>=£245ungﬁmw)+$uw@xﬂ-omgﬂnwnnn

where ¢(8) and ¢(s) arc scalar valued random functions with
values in [0,1]. By (15) and the continuity (in x) and bounded-

ness properties of fx(x,u,s) and oi,x(x,s),
2 2
Elei(t)I = o(e)

uniformly in t. With this estimate (L7) easily follows from (18) in [t,%,].

Next write 8t,(A) = p, and let El?(si-efi)|2 = o(ea).

For t e [si'eTi’si'eTi+epi] writen
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t
(19)  ¥(t) = ?(si-ewi) + [ [£(x\(5),u,(2),8) - £(x(s),u(s),s)
8- €T,
- ?xyex(a)]ds

t

-] [£(R(s),u(8),8) - £(x(s),u(s),s)]as
Bi-e'l'i

t ~ ~N
+ £1-e1‘1 ? dzd(a)[ai(xex(s):s) - ai(x(s),s) - ai,xyek(s)]

(19) can be written as

t

(20)  F(t) = Flogmery) + [ [£(xp(8),u,(5),8) - £(R(e),u 4 (s),8)]
Bi-ETi

t
+ £i-€‘ri % dzd(s)[oj(xek(s),s) - “J (’?(5))8)] + 35(t)

£ t
ej(t) = -[£ eTif.‘xye./\(:s)d.:s + £

) ;,: azy(s)3; Fen(o)].
i

1-€T4



=

o '
Using Elyck(s)l“ = 0(e2) uniformly in s we get, for t in the
desired interval,

© - 2 v 2 2
E|S 2, dz,(s)o, ¥ 7\(5” < K5 J |y 4 (s)]|7ds = o(e"),
8,-€T, ] J J,x"e - g,-et,
- S A 174
end similarly for the first term of e5(t). Using this and the

estimates for the two integrals in (20),

t
E|/
8

er, 0 (x 7(5),8) - 0, (R(),9)11% +

t
EIgi_ﬁitf<xex<s):uex<§>,s> - £(3(s),u (s), 8)1as|®

t ~ 2.
<K S E|x (s)] ds,
8y-€Ty

‘and (15), gives (17) in [s -eT,, 8;-€Ty + epy].

30. To complete the proof, it only remains to show that

2 2
(21) By () - 8x 5 (8)]% = o(e")
(21) holds for t = 0, and indeed, (21) is zero for
t € [0,8,-€7y]. If (21) holds at t_, then it is true in [t.,%)]

1f u,(t) = (t) in [t,,t,], since w.p.1

(22) Y a(ty) = By (6)) = 05, 8)[¥ 5 (85) - Bxpp (80)].



Next, for t ¢ [s;-€T;, 8,-€T, + €P;], where Py = 61:.1(7\),
2 £) = v (8y-€7y) + Ty(8) + 3(e°)
(23) ye7\( ) = vea(sy-emy i ©

where

Ji(t) = f [£(X(8),u_(8),8) - v(X(s),0(s),s)]ds
S17€Ty
Let J; = Jf(si-e'ri+epi). If y;\(to) = ye}\(to) + 3(e2), and
un(t) = U(t), t € [t,,t,], then, w.p.1.,

ye?\(tl) = °(t]_:to)ye7\(to) + "6(62).

€
Furthermore, ElJl(t)]2 = O(ea) uniformly in t, end O(t-ep,, T-€pp) =
®(t,t) in probebility as e =0, for any constants PP

The last paragraph implies that w.p.l., for t A UIi(e'?\) ,

e e

where 11(67\) is the interior of 11(67\),

@) v, (t) = z °('°:Si)'71 + 0(t,0)8x , (0) + ?s(e ).
t>8,
Define
84-€T +€Py
Jg =/ [f‘(i(s),ui,s) - £(%(s),8(s),s)]ds.

si-e'ri
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Then (I-3) implies that E|J§-Ji|2 = o(ee). Thus (24) iz valid for

Ji replacing Jf. By Lemmsa 1, (letting Oy = =Ty “+ pi, al = 1'1)

.e.i_i 3, = 2(R(s,),uy,8,) - £(’(s,),8(s,),8,)

w.p.l. as € =0,

Thus, for t £ UI;D_(e?\),

Yd\(t) = §>Z Q(t,si)&;i(?\)[f()?(si),ui,si) - f(g(si),ﬁ(si),si)]
S
i
(25) + 0(t,0)8x  (0) + B(e")
= 8x, () + 3(52‘).

Since the sets Ii(e?\) decrease to the empty set as € =0, (25)

holds for all t ¢ [O,T]. Q.E.D.

6. The Meximum Principnle.

Combining Theorems 1 and 2 we get Theorem 5. Define the column vector

P= (1,0,...,0)'. Theorem 3 reduces the Pontriagin maximum principle, if the

noise is absent (¢ = 0).

Theorem 3. Assume (I-1) . (I-5). There are continuous (in t)

versions of o(T,t), ®(t;,t) (for t<T and %< t,, resp.).

There is a scalar 6 <O, yectors a, <0, i=0,1,...,kT,(non-

positive canponents a.g) where a‘.jl_ =0 if qg(ﬁ) < 0, and vectors
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b,sPp, DOt 8ll zero, so that for almost all t ¢ [0,T] end all admissible

Ui
u(t), end @ measurable 8x(C) =satisfying EI&m(O)Ia < w, (26) holds, w.p.l.

(26a) {Ee[Pwhx(Q(T))]'¢(T,t) + ;Z tE ai[ai,x+Eai e]o(ti,t)
1> | ’

+E%ﬁT;ﬁL;unm}§&wLuuxw-f&w»&wwﬁ <0

(26v) {Ee[p+hx<ﬁT>1'¢<T,o) o3 ol 5, 1,0

N U A A -
+ biE[rT,x+ErT,e]°(T’o) + béE[ro’x+Ero’eJ}8x(o) <o

BERELN

(26b) implies that the term in brackets is zero. Define the vector

p(T) by its transpose (27)

” oy - A n oA
(27) P'(T) = o[P+h (%(T))]" + Ppl¥, By o] + apldp *Edy ]

Define, where t_ =0,

(28) p'(t) = p'(T)O(T,t), & <t<T
p'(t;) = p'(ti) + ai[ai,x+Eai,e]’ i=1,...,k
p' (t) = p'(t;)@(ti,t), t, . <t <t

il - i

Then (26) becomes
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(29e) Ep' (t)[£(X(t),u(t),t) - £(X(t),8(t),t)] <0
(29v) E[p' (0) + bé(?o’x-&E? c,e) 18x(0) = 0.

Furthermore, w.p.l.

(302) E(p' (£)[£(R(t),u(t),t) - £(X(t),u(t),t)]| 2,) <0
(500) B([p' (0) + 24(F, #EF, )1 ;) = O

Proof, The proof of (26) follows from Theorem 1l using the

identification of the Q,,R, with the c,,f, in Theorem 1, and the fact
that K 1is a first order convex approximation, by Theorem 2. Also the
linear operator (acting on ©&x(T)), E[P+hx(§,1,)]'6x('1‘) , is identifjed with
¢ . Equation (29) follows from (26) upon using the substitution (27),
(28). To prove (30a) suppose that (30a) is violated on a Qt measurable
set B, with P(B.) >0 Define u(t) = u(t) on By, T(t) = 9(t) on

Q -~ B.. Then (29a) is violated with the admissible U(t) replacing the

t
u(t) there. A similar proof yields (30b). Q.E.D.

T. Extensions to Closed Loop Systems.

Thus far the admissible u(w,t) ‘are defined to be measurable
on the a priori fixed og-algebra gt. If the admissible controls are
assm_ned to depend explicitly on the state x - or 4its past values,
i.e., u(w,t) = u(x(t),t) or ufw,t) = u(x,,s < t,i), then a very

similar development can be carried out provided either the Lipschitz
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condition
(31) lu(x,t) - u(y,t)| < Kl|x-y|

or the generalized Lipschitz condition, where x, denotes the function
with value xt(s) = x(t-s), 8 >0,

M
lu(x,,t) - u(y,t) <[ |x(t-8) - y(t-s)|an(s)

for a bounded measure m(*) nhold.” Indeed, with the use of the perturbed
controls and a convex cone K of the type used in Theorem 2, we cbtain
Theorem 3, with the exception that the Ex terms in the yek(t) and
¢(t,¢) equations are replaced by ?x + ?u'ﬁx' In particular, let the
dete eveilable to the control at time t be g(x(t),t), where g(x,t)

is a BorelrFunction satisfying (31) end ]g(x,t)|2 S_Ko(l+|x|2). Let
the‘class of admissible controls U Ybe the family of Borel functions
u(g,t) with values u(g(x(t),t),t) end which satisfies (31), and which
has values in ?&t at time t. Assume the last two sentences of (I-1)

end that (I-2) holds for each such u. The convex cone is composed of

elements with values (for almost all s)
0(t,0)8x(0) + 0(t,s)[£(R(e),u(s(R(s),s),s),s) - £(&(s),8(e(X(s),s),5),8)1.

It is supposed that there is a continuous function E(g,t) satifying

(31) with ~(g,t) € %, for ell g eand Iﬁ(g‘,t)l2 _<_Ko(l+|g]2)

*For more detail on the more general stochastic differential delay system,
see [15].
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such that u(g,s) = u(g,s). (This is not a significant restriction.)
Let ﬁi(g,t) satisfy the conditionson U above and reduce to
u(g,s;) st t=3s,. In (10), let uek«”’t) = Ei(g(x(t),t),t) in
I,(eN). Then, under the addit:ional conditions (I4-5), Theorem 3 holds
with the conditioning on 4 replaced by conditioning on g(ﬁ(t),t).
We heve not given more details on the extensions, since attempts to
extend the method to a more general class >f controls whose mcembers

may be discontinuous in the state, have failed so far.
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